Piecing together the structure of retroviral integrase, an important target in AIDS therapy

Mariusz Jaskolski\(^1,2\), Jerry N. Alexandratos\(^3\), Grzegorz Bujacz\(^2,4\) and Alexander Wlodawer\(^3\)

\(^1\) Department of Crystallography, Faculty of Chemistry, A. Mickiewicz University, Poznan, Poland
\(^2\) Center for Biocrystallographic Research, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
\(^3\) Macromolecular Crystallography Laboratory, National Cancer Institute at Frederick, MD, USA
\(^4\) Institute of Technical Biochemistry, Technical University of Lodz, Poland

Keywords
AIDS; antiretroviral drugs; DNA integration; HIV; integrase

Correspondence
A. Wlodawer, Macromolecular Crystallography Laboratory, National Cancer Institute at Frederick, Frederick, MD 21702, USA
Fax: +1 301 846 6322
Tel: +1 301 846 5036
E-mail: wlodawer@nih.gov

Note
This review is dedicated to David Eisenberg on the occasion of his 70th birthday.

(Received 13 January 2009, revised 17 February 2009, accepted 17 March 2009)

doi:10.1111/j.1742-4658.2009.07009.x

Integrase (IN) is one of only three enzymes encoded in the genomes of all retroviruses, and is the one least characterized in structural terms. IN catalyzes processing of the ends of a DNA copy of the retroviral genome and its concerted insertion into the chromosome of the host cell. The protein consists of three domains, the central catalytic core domain flanked by the N-terminal and C-terminal domains, the latter being involved in DNA binding. Although the Protein Data Bank contains a number of NMR structures of the N-terminal and C-terminal domains of HIV-1 and HIV-2, simian immunodeficiency virus and avian sarcoma virus IN, as well as X-ray structures of the core domain of HIV-1, avian sarcoma virus and foamy virus IN, plus several models of two-domain constructs, no structure of the complete molecule of retroviral IN has been solved to date. Although no experimental structures of IN complexed with the DNA substrates are at hand, the catalytic mechanism of IN is well understood by analogy with other nucleotidyl transferases, and a variety of models of the oligomeric integration complexes have been proposed. In this review, we present the current state of knowledge resulting from structural studies of IN from several retroviruses. We also attempt to reconcile the differences between the reported structures, and discuss the relationship between the structure and function of this enzyme, which is an important, although so far rather poorly exploited, target for designing drugs against HIV-1 infection.

Although the existence of retroviruses and their ability to cause diseases have been known for almost a century [1], it was the emergence of AIDS in the early 1980s that provided a huge impetus to structural studies of their protein and nucleic acid components. Retroviruses, most notably HIV-1, are enveloped in a glycoprotein coat and lack the high degree of internal and external symmetry that makes it possible to crystallize many relatively simple viruses, such as picornaviruses, exemplified by the viruses that cause common cold and polio. It is thus unlikely that high-resolution information about the structural organization of intact retroviruses could be obtained with the currently available methods such as crystallography, although

Abbreviations
ASV, avian sarcoma virus; CCD, catalytic core domain; 5-CITEP, 1-(5-chloroindol-3-yl)-3-hydroxy-3-(2H-tetrazol-5-yl)-propenone; CTD, C-terminal domain; FDA, US Food and Drug Administration; IBD, integrase-binding domain; IN, integrase; LEDGF, lens epithelium-derived growth factor; NTD, N-terminal domain; PFV, prototype foamy virus; PIC, preintegration complex; PR, protease; RT, reverse transcriptase; SIV, simian immunodeficiency virus; Y-3, 4-acetylamino-5-hydroxynaphthalene-2,7-disulfonic acid.
significant progress in lower-resolution studies by electron microscopy has given us excellent ideas about global aspects of their structure [2].

A typical retrovirus such as HIV-1 has been described as ‘Fifteen proteins and an RNA’ [3]. Three of these proteins are enzymes that are retrovirus-specific and are encoded by all retroviral genomes [4], although additional enzymes are found in some retroviruses. The structures of two of these enzymes, protease (PR) [5] and reverse transcriptase (RT) [6,7], have been investigated in extensive detail during the last 20 years, using crystallography and NMR spectroscopy. A very large number of such structures, solved for both full-length apoenzymes and for complexes with substrates, products, effectors, and inhibitors, have been published [8–13]. The detailed structural knowledge, based on low-resolution to medium-resolution structures of RT and medium-resolution to atomic-resolution structures of PR, has been of considerable use in the design of clinically relevant inhibitors of these enzymes [13,14]. At this time, 18 nucleoside and non-nucleoside inhibitors of RT, as well as 10 inhibitors of PR, have been approved by the US Food and Drug Administration (FDA) for the treatment of AIDS. By contrast, far less is known structurally about the third retroviral enzyme, integrase (IN), and fewer inhibitors of IN have been discovered so far. Only one of them, raltegravir, has recently gained FDA approval as an AIDS drug [15].

Although many anti-HIV drugs are already available, serious side effects and the emergence of drug-resistant mutations necessitate the development of novel compounds. The current drugs targeting RT and PR are not without side effects. Significant side effects include myopathy, hepatic steatitis, and lipodystrophy, caused by anti-RT drugs alone, or a combination of anti-RT and anti-PR drugs. Anti-RT drugs block several mitochondrial proteins (DNA polymerase γ, uncoupling proteins), whereas anti-PR drugs such as amprenavir or indinavir block the mechanistically unrelated enzyme, mitochondrial processing PR [16]. Inhibitors of IN appear to be particularly promising [17–19], because, unlike PR and RT, this enzyme does not have direct human homologs. Although such inhibitors might still affect the function of other enzymes, such as RAG1/2 recombinase [20], they have not as yet been shown to cause pathological effects. Drugs against IN might be given in higher, more effective doses with better-tolerated side effects. The inhibitors/drugs currently in animal experimental or human clinical trials seem to be fulfilling this promise, having, in the short term, fewer side effects than FDA-approved anti-PR or anti-RT drugs. In consequence, drugs targeting IN may be given in sufficiently high doses to fully block the enzyme from integrating viral DNA into the cell genome, thus allowing the host immune system to fight off the infection completely.

Whereas HIV-1 IN is clearly the most medically relevant IN, and has been extensively investigated for over two decades, the enzyme encoded by avian sarcoma virus (ASV) was studied much earlier [21]. In addition, enzymes from other retroviruses, including HIV-2, simian immunodeficiency virus (SIV), prototype foamy virus (PFV), Mason–Pfizer monkey virus, and feline immunodeficiency virus, have been investigated as well. Although a significant amount of work has been performed with feline immunodeficiency virus [22], it will not be further discussed here, as no crystals have been obtained. Similarly, we will not discuss Mason–Pfizer monkey virus IN further [23], as we are not aware of any advanced structural studies involving this protein.

As will be discussed later, no crystal structure of full-length IN is available at this time. However, many structures of fragments of this enzyme from several different viral sources have been solved by crystallography and NMR in the last 15 years (Table S1), including several important structures that have appeared since the last comprehensive review of this subject was published [24]. These data will be discussed below.

Functional properties of retroviral INs

In the present review, we focus predominantly on the structural aspects of retroviral INs and not on the enzymatic mechanism and other functional features of these enzymes, which have been extensively reviewed elsewhere [24–27]. However, a short introduction to the basics of IN function is necessary to properly interpret the importance of various structural features.

The retroviral genomic RNA is reverse transcribed into a DNA copy by the previously mentioned retroviral enzyme, RT. The function of IN is to insert the resulting viral DNA into the host genome, with the reaction being accomplished in two distinct steps (Fig. 1), both catalyzed by a triad of acidic residues in a characteristic D,D(35)E motif (two aspartates and a glutamate, the latter separated from the second aspartate by 35 residues), found in all retroviral INs. In the first processing step, IN removes the two terminal nucleotides (GT in HIV-1, and TT in ASV) from each 3′-end of the double-stranded viral DNA. The second step, called ‘joining’ or ‘strand transfer’, involves a nucleophilic attack by the free 3′-hydroxyl of the viral DNA on the target chromosomal DNA, resulting in

References

covalent joining of the two molecules. If the reaction is performed in a concerted manner, the second, coordinated insertion is made into the complementary strand of the target DNA, in a position five nucleotides away from the site of the first insertion (in HIV and SIV; six nucleotides in ASV). The subsequent removal of the two unpaired nucleotides at each 5'-overhanging end of the viral DNA and filling of the gaps are most likely performed by host enzymes.

Although the reactions described above require only the viral and host DNA substrates and divalent metal cofactors used by the IN during the catalytic mechanism (physiologically Mg\(^{2+}\), but, \textit{in vitro}, could also be Mn\(^{2+}\), more components are included in the preintegration complex (PIC), which is necessary for the integration to take place in the nucleus [28,29]. PICs of HIV-1 have been shown to also contain viral RT and matrix proteins, as well as a number of host proteins. One of the latter proteins, called barrier-to-autointegration factor, appears to be crucial in preventing autointegration (integration of viral DNA into viral DNA) [30,31]. Whereas the structure of barrier-to-autointegration factor complexed to DNA is known [32], its mode of binding to IN (if any) is not. The only cellular factor that has been shown experimentally to bind directly to IN is lens epithelium-derived growth factor (LEDGF), also known as PC4 and SFRS1 interacting protein 1 or transcriptional coactivator p75 [33–36]. Structural aspects of its interactions will be discussed below. However, identification of all proteins that participate in creating PICs and assignment of their role is still not complete.

The amino acid sequence and domain structure of retroviral INs

A single polypeptide chain of most retroviral INs comprises ~ 290 residues and consists of three clearly identifiable domains [37], as well as interdomain linkers. However, some important variations are present. For example, PFV IN is significantly longer, comprising 392 residues, and ASV IN is encoded as a 323 amino acid protein that is post-translationally processed to the final polypeptide consisting of 286 residues, which is fully enzymatically active [38]. It must be stressed, however, that definition of the domain boundaries is, to a certain extent, arbitrary, because of the differences in the lengths of the linking sequences, as well as difficulties in assignment of the residues at the borders between the domains and the linkers. As shown in Fig. 2, the N-terminal domain (NTD) of HIV-1 IN contains residues 1–46, followed by a linker consisting of residues 47–55. The catalytic core domain (CCD) contains residues 56–202, and is followed by a linking sequence comprising residues 203–219. Finally, the C-terminal domain (CTD) contains residues 220–288. The residue numbers at domain boundaries for enzymes from HIV-2 and SIV are approximately the same, whereas they differ for ASV IN (Fig. 2). For PFV IN, a possibility exists that an additional domain...
consisting of approximately 50 residues might be present at the N-terminus, preceding the NTD. For practical reasons, slightly different start and end points have been utilized for cloning of individual domains and/or two-domain constructs that have been used in structural studies. The structures of representative isolated domains of IN are shown in Fig. 3.

The sequence identity/similarity percentages for full-length HIV-1 IN are 58%/74% in comparison with SIV IN, and 23%/37% in comparison with ASV IN, respectively (Fig. 2). These numbers are not completely accurate, as they depend on the correctness of the structure-based alignment of IN from different viral sources. For individual domains, the identity/similarity
percentages are as follows: for the NTD, 55%⁄76% in comparison with HIV-1 and SIV IN, and 26%⁄46% in comparison with ASV IN; for the CCD, 61%⁄77% and 27%⁄46%, respectively; and for the CTD, 53%⁄68% and 14%⁄25%, respectively. Clearly, sequence conservation is the lowest for the CTD. It should be stressed that the sequences included in Fig. 2 are shown for enzymes encoded by specific retroviral strains and that quite significant variations between different strains have been observed [39]. In addition, crystallographic studies of some CCDs of IN or of two-domain constructs were only possible after the introduction of mutations (see below).

Until now, no reports of crystallization of isolated NTDs or CTDs have appeared. The first crystals of the HIV-1 IN CCD [40] were only obtained after an extensive mutagenesis study, which identified a protein with an F185K mutation that had enhanced solubility [41]. A protein with an F185H substitution, corresponding to the structurally equivalent residue present in ASV IN, was also crystallized [42]. A further mutation, W131E, was introduced to the HIV-1 IN CCD to enhance solubility even more [43]. The CCD of ASV IN could be crystallized without mutations, although special precautions in protein handling were necessary.

The NTD–CCD construct of HIV-1 IN was crystallized using a soluble variant of the protein with the above-mentioned mutation F185K, as well as with two additional mutations, W131D and F139D [44]. The combination of these mutations and use of a specific buffer allowed the protein concentration to be increased up to 10 mg mL⁻¹, and resulted in the growth of diffraction-quality crystals. The same three mutations were also used in crystallization of the CCD–CTD construct of HIV-1 IN, where they were also introduced with the aim of increasing solubility [45]. Two additional mutations, C56S and C286S, were introduced to prevent nonspecific aggregation. However, the structure of the analogous two-domain construct of SIV IN included only a single mutation, F185H, implemented to improve protein solubility [46].

The catalytic domain of IN

The central domain of IN (CCD) contains the complete catalytic apparatus, and exhibits limited activity even in the absence of the other domains. Although the CCD by itself does not perform the joining reaction, it does support processing, albeit with decreased specificity [47]. The CCD also supports a reaction called ‘disintegration’, in which donor and acceptor DNA molecules are regenerated from a substrate with a Y-letter topology [4]. Owing to its importance as the core of the enzyme and because of the failure to crystallize intact INs, the CCD was the first target for structural investigation of these proteins.

The structures of the isolated CCDs (Fig. 3B) have been determined in about three dozen crystallographic studies of HIV-1 IN [40,42,43,45,48–51], ASV IN [52–57], and PFV IN [58]. In addition, seven medium-resolution to low-resolution structures of fusion constructs with one of the terminal domains also included CCDs of HIV-2 [59] and SIV [45]. As crystals of the ASV IN
CCD were easier to grow, they were studied more extensively, yielding excellent structural data, such as the atomic-resolution structure with the Protein Data Bank code 1CXQ [57]. The CCD has been studied in its apo-form and in various forms complexed with metals, including the catalytically competent divalent cations Mg\(^2+\) and Mn\(^2+\). Again, ASV IN has provided a more exhaustive picture of metal coordination by the CCD, including occupation of multiple metal sites, or the presence of cations such as Zn\(^2+\) that can also act as inhibitors of IN activity. Whereas six structures of small-molecule inhibitor complexes of the HIV-1 and ASV CCDs have been published [43,51,56], it has not been possible to elucidate any structure of a DNA complex, although some promising crystallization results have been achieved. In contrast to the situation concerning the structure of the peripheral IN domains, no solution structure of the CCD is available.

The CCD is built around a five-stranded mixed \(\beta\)-sheet flanked by \(\alpha\)-helices (Fig. 3B). The antiparallel \(\beta1-\beta2-\beta3\) hairpin-type arrangement is extended by two parallel strands, \(\beta4\) and \(\beta5\), which form part of two \(\beta-\alpha-\beta\) crossovers, with the intervening helices \(\alpha1\) and \(\alpha3\), plus a helical turn \(\alpha2\), all located on one side of the \(\beta\)-sheet. The other side of the \(\beta\)-sheet is covered by a long helix, \(\alpha4\), which runs across its face. A helix-turn-helix motif leads to a long stretch of nearly 40 residues that has a helical conformation (\(\alpha5\) and \(\alpha6\)), except for a finger-like extrusion that is formed by about 12 residues (Phe185–Ala196 in the HIV-1 sequence) in the middle. The finger has a peculiar conformation, extending away from the body of the enzyme (Fig. 3B). Its general conformation is similar in CCDs from different viruses, although it pivots on its points of attachment as a semirigid body. Despite its glycine-rich sequence, the finger is stabilized by conserved interactions, for example by a salt bridge (between Arg187 and Glu198 in HIV-1) anchored at the beginning of helix \(\alpha6\). The finger sequence of the ASV CCD is the least conserved and, for example, the above salt bridge is not preserved. The amino acids of the finger are hydrophilic, in accord with its solvent exposure in the isolated CCD, except for the extreme tip, which is occupied by a conserved isoleucine. (The presence of Glu203 in an equivalent location in the ASV IN sequence provides another exception in this regard.) This unusual chemical character of the exposed tip together with the lattice contacts formed by the finger loop are most likely responsible for the variations observed in different crystal structures. The C-terminal helix \(\alpha6\) of the CCD is truncated in the PFV IN CCD, and is completely absent in the construct of an isolated ASV IN CCD used for crystallographic studies [52,57]. However, the finger structure is clearly seen in the two-domain construct of ASV IN [60], where Lys199–Thr207 form an insert between helices \(\alpha5\) and \(\alpha6\). These observations may indicate that selection of Thr207 as the C-terminal boundary of the ASV IN CCD on the basis of extensive studies of many truncation constructs [47] might not represent the situation in a complete CCD.

The catalytic residues of the D,D(35)E sequence signature found in all INs are presented by the middle of chain \(\beta1\) (Asp64), the loop connecting \(\beta4\) and \(\alpha2\) (the second aspartate), and the N-terminal segment of \(\alpha4\) (the glutamate). They are juxtaposed in a row within a patch of negative charge on the surface of the rather flat, slab-like molecule. The active site face of the slab is opposite to the CCD dimerization face, and the two active sites of the dimeric enzyme are therefore far apart, nearly as far as the architecture of the dimer allows. Dimerization of the CCD involves a tandem of predominantly hydrophobic \(\alpha1-\alpha5\) interactions, plus hydrophobic contacts between helices \(\alpha6\) across the dimer two-fold axis, and additional hydrophilic contacts in the middle of the dimer. The latter interactions are interesting because they are connected with the formation of a hydrophilic cavity in the center of the dimer, filled by a few water molecules.

Whereas the C\(\alpha\) traces of the ASV and HIV-1 CCDs superpose quite well, the agreement between their dimers is less optimal and reflects a slight but evident difference in the dimer architecture. As a consequence of this difference, the two active sites of the HIV-1 IN CCD dimer are less distant (38.5 vs. 42.5 Å), as measured by the separation of the catalytic magnesium ions. The distance between the two active sites is incommensurate with a 5–6 bp segment of double-helical B-DNA, and suggests that the host DNA must be unwound for coordinated processing of the two strands, or, more likely, that two distinct IN dimers act each on only one insertion point. Until the structure of the complete IN enzyme is solved, it can only be assumed that dimerization of the core domains of the full-length proteins is not different from what has been observed for the isolated CCD domains. This assumption is supported by the consistent picture of CCD dimerization revealed by all structures of two-domain IN constructs and of complexes of IN with LEDGF [35,59].

The CCD of HIV-1 IN used in the first structure determination (1ITG [40]) contained the F185K mutation introduced to enhance solubility. The cacodylate residue from the crystallization buffer was found attached to the cysteine side chains of the protein,
including Cys65 located in the active site area [40]. The constellation of the catalytic amino acids (Asp64, Asp116, and Glu152) was found to be in an ‘inactive’, non-native configuration (Fig. 4A). The distortion of the catalytic apparatus became apparent only later, by comparison with other, unperturbed, structures, notably the ASV IN CCD [52,53]. The non-native character of the active site is manifested by the altered conformations of the two aspartates, including a major reorientation of the loop carrying the Asp116, and by complete disorder of the helix fragment with the Glu152 and the entire flexible active site loop in front of it (13 residues in total, 141–153). It is unlikely that the distortion of the active site was caused by the presence of the unnatural arsenic substituent, as in a related structure of arsenic-free HIV-1 IN (2ITG [42]), the catalytic aspartates are found in exactly the same inactive conformation. Although the structure 1ITG failed to map the functional state of the protein, it provided the first chain tracing, and was important in revealing the plasticity of the IN active site and its ability to adopt different conformations.

Perhaps the most significant consequence of the inactive conformation of the catalytic residues is the inability of the two aspartate side chains to bind a catalytic divalent metal cation in a coordinated fashion. Such a cation, revealed by Mg\(^{2+}\) and Mn\(^{2+}\) complexes of ASV IN [53,54] and later by Mg\(^{2+}\) complexes of HIV-1 IN [48,49] and PFV IN [58], has an octahedral coordination sphere completed by four water molecules (Fig. 4B). The catalytic triad can remain in the active conformation even in the absence of metal.

Fig. 4. The active site of retroviral INs. The figures show, in stereoview, the three essential amino acids of the D,D(35)E motif in selected, least-squares-superposed crystallographic structures of the CCD in the (A) unliganded and (B) Mg\(^{2+}\)-complexed form. The catalytic residues are shown in the context of the protein secondary structure by which they are contributed, namely an extended \(\beta\)-ribbon (the first aspartate, middle of figure), a loop (the second aspartate, left), and an \(\alpha\)-helix (the glutamate, right). The residue numbering Asp64, Asp116 and Glu152 is for the HIV-1 IN sequence, and corresponds to Asp64, Asp121 and Glu157 in ASV IN. The three divalent metal cation-free active sites shown in (A) correspond to the first HIV-1 IN structure (1ITG, orange) [40], solved in the presence of arsenic (part of cacodylate buffer), which reacted with cysteine residues, including one within the active site area (orange sphere), to another medium-resolution structure of HIV-1 IN (1BI4, molecule C, gray with red oxygen atoms) [49], and to the atomic-resolution structure of ASV IN (1CXQ, green) [57]. Note that the aspartates in 1ITG have a completely different orientation than in the remaining structures, and the entire Asp116 loop has a different, non-native conformation. Another symptom of active site disruption in the 1ITG structure is the absence in the model of Glu152, a consequence of disorder in this helical segment. The active sites complexed with the catalytic cofactor Mg\(^{2+}\) (large sphere) are shown (B) for HIV-1 IN, 1BL3 (molecule C, gray with red oxygen atoms) [49], ASV IN, 1VSD (green) [53], and PFV IN, molecule A of 3DLR (orange) [58]. The structure of the ASV IN has the highest resolution, and its quality is reflected in the nearly ideal octahedral geometry (thin green lines) of the Mg\(^{2+}\) coordination sphere, which, in addition to interactions with the carboxylate groups of both active site aspartates, includes four precisely defined water molecules. The coordination geometry of the HIV-1 IN complex 1BL3 is significantly distorted. The view direction in both figures is similar, with a small rotation around the horizontal axis.
cations, but then the carboxylate groups are held in place by water-mediated hydrogen bond bridges (Asp-water-Asp64-water-Glu). However, as revealed by the atomic-resolution structures of ASV IN, and in agreement with the requirement for basic conditions for IN activity (peak endonuclease activity at pH 8.5 [55]), conformational changes in the active site take place at pH values below 6 and consist of protonation and a concomitant swing of the Asp64 carboxylate group out of its metal-coordinating position, and into a dual-hydrogen-bond lock with a neighboring asparagine. In addition, changes of pH influence the flexible active site loop, which in HIV-1 IN is formed by residues 141–147, adjacent to the glutamate-bearing N-terminus of helix α4, and which in all the crystal structures shows a variable degree of disorder. The flexible active site loop contains highly conserved residues and appears to be involved directly in substrate contacts [61].

There is little doubt that the metal-coordination site formed between the two aspartate side chains (site I) corresponds to a cation essential for catalysis. The perfect octahedral geometry of this site explains why mutations of the catalytic aspartates cannot be tolerated. However, increasingly larger cations can still be accommodated, from Mg$^{2+}$ (mean metal–O distance 2.11 Å), to Mn$^{2+}$ (2.23 Å), and even Cd$^{2+}$ (2.43 Å) and Cu$^{2+}$ (2.46 Å for incomplete coordination sphere). Estimation of the metal-binding geometry is more reliable from the ASV IN structures, which are in excellent agreement with expected coordination stereochemistry, for instance with valence parameters [62] of the central ion, which for the structures listed in Table S1 are calculated as 1.95 (1VSD), 1.92 (1A5V), or 1.79 (1VSJ), the ideal target being 2.00. The corresponding values for the HIV-1 IN data indicate a high level of error, e.g. 1.23/0.91 (1BL3) or even 1.08/0.80/0.79 (1QS4), presumably as a consequence of poor data quality or structure refinement protocols. There is an important difference between ASV and HIV-1 IN in coordinating high-electron metals in site I, connected with the presence of a cysteine at position 65 in the latter enzyme. The thiol group of this residue is found in the coordination sphere of the cadmium cations in 1EXQ [45]. As no such possibility exists in ASV IN, where a phenylalanine immediately follows the first catalytic aspartate, high-electron metals may have different impacts on the catalytic properties of INs from these two viruses. With light metals, such as Mg$^{2+}$, the thiol group of Cys65 in HIV-1 IN assumes a totally different orientation, and, consequently, there is no difference in the coordination chemistry between ASV IN and HIV-1 IN.

Structural studies of inhibitor complexes of IN

Structural data on inhibitor complexes of IN are limited to a few structures of the CCD (Table S1). The structure of an inhibitor, 1-(5-chloroindol-3-yl)-3-hydroxy-3-(2H-tetrazol-5-yl)-propenone (5-CITEP) (Fig. 5A), in complex with the Mg$^{2+}$-containing HIV-1 IN CCD [43] is the only one that includes a compound capable of binding within the active site area of the enzyme. The IC$_{50}$ value of 5-CITEP, measured in a reaction that monitors 3’-end processing together with DNA strand transfer, was reported to be 2.1 µM. This inhibitor was observed in only one of the three independent copies of the enzyme molecule present in the crystal. The molecule of 5-CITEP is located between the coordinated Mg$^{2+}$ and the catalytic Glu152, with which it forms hydrogen bonds (Fig. 5B). The active site of the molecule to which the inhibitor is bound is located close to the crystallographic two-fold axis, raising the possibility that the exact mode of binding might have been influenced by crystal contacts. The inhibitor makes no direct contacts with either Asp64 or Asp116, and has only an indirect, water-mediated contact with the bound Mg$^{2+}$. Two symmetry-related molecules of 5-CITEP interact directly with each other. In view of these facts, it is doubtful whether this structure represents the true mode of binding that would be present in an IN–DNA complex.

Another IN inhibitor, 4-acetylamino-5-hydroxynaphthalene-2,7-disulfonic acid (Y-3) (Fig. 5A), was co-crystallized with the ASV IN CCD in the absence and presence of Mn$^{2+}$ [56]. This aromatic molecule, with several hydrophilic substituents, does not bind in the active site of the enzyme but rather on its surface, where it participates in crystallographic contacts, although there is no interference with CCD dimerization. Its presence in the crystals is, however, not a crystallographic artefact, as it is observed in the same context at different pH conditions and regardless of metal coordination. Although Y-3 undergoes no direct interactions with the catalytic residues, it does seem to influence the conformation of the flexible active site loop by binding to Tyr143 and Lys159 (ASV numbering). Y-3 very likely directly interferes with DNA binding by hydrogen bonding to Lys119, a residue corresponding to His114 in HIV-1 IN, which has been shown to be capable of crosslinking to DNA. It is quite possible that these interactions form the basis of its inhibitory capacity.

The inhibitors discussed above, as well as raltegravir (Fig. 5A), the only IN inhibitor approved
for clinical use, are aryl diketo acid derivatives that inhibit strand transfer much more efficiently than 3′-end processing [63]. Such compounds are characterized by the presence of α and γ C=O groups in the vicinity of a carboxylic acid moiety, although the latter group can be replaced by a triazole or tetrazole ring [64]. No structure of raltegravir complexed with IN has been published to date, but it is expected that its mode of binding might involve direct interactions with the divalent cation(s) present in the active site.

A different class of inhibitors for which structural data are available includes arsenic derivatives that were cocrystallized with HIV-1 IN [51]. Crystal structures have been solved for tetraphenylarsonium chloride and 3,4-dihydroxyphenyl-triphenylarsonium bromide. Both compounds bind in a similar fashion at the interface of the CCD dimer, and interact directly with Gln168 of one of the molecules. Surprisingly, the quality of the electron density maps is much better for the former compound than for the latter, although only the latter exhibits measurable inhibitory activity for the disintegration reaction (IC50 of 380 µM).

As IN must form at least a dimer to be catalytically active, prevention of dimerization offers an interesting option for its inhibition [65]. Several studies have reported inhibition of IN activity through the use of peptides derived from amino acid sequences responsible for the dimerization of the CCD [66,67], although no structural data are available. In some cases, it was possible to confirm that such peptides disrupted the association–dissociation equilibrium [68] or the crosslinking of the IN dimer [69]. On the other hand, Hayouka et al. [70] have demonstrated that the opposite concept, namely forcing IN to form higher-order oligomers, may be a useful approach for rendering the IN inactive. Specifically, they used peptides (called ‘shiftides’), derived from the cellular IN-binding protein LEDGF, to inhibit the DNA-binding of IN by shifting the enzyme’s oligomerization equilibrium from the active dimer towards the tetramer, which, according to their data, is incapable of catalyzing the first step of integration, i.e. the 3′-end processing.

Development of these and other classes of IN inhibitors is an ongoing process, and some very potent inhibitors, with IC50 values in the low nanomolar range, are now available [71]. The process that led to the FDA approval of raltegravir, as well as clinical studies of other drug candidates, have been covered in a number of recent reviews [72–74]. In view of the paucity of available structural data on IN inhibitors, the wider subject of IN inhibitors in general cannot be adequately treated within the scope of the current review.
The NTD of IN

NMR structures of the isolated NTDs were solved for INs from HIV-1 [75] and HIV-2 [76]. Multiple views of the NTD are also available in medium-resolution crystal structures of a two-domain construct of HIV-1 IN that contains the NTD and CCD (1K6Y [44]) and of the HIV-2 NTD–CCD–LEDGF complex (3F9K [59]). The solution structure of the HIV-1 IN NTD showed the existence of dimers consisting of two interconverting protein forms [75]. The two forms, denoted D (1WJA) and E (1WJC), were observed together in the NMR experiment, with the D form being seen mostly above ~300 K, and the E form below that temperature. A form intermediate between these two was reported for an H12C mutant of the NTD (1WJE [77]).

The structure of a monomer of the NTD consists principally of four helices (Fig. 3A). Helix 1 comprises residues 2–14 in the E form and residues 2–8 in the D form, helix 2 comprises residues 19–25, helix 3 comprises residues 30–39, and helix 4 comprises residues 41–45. The segment beyond residue 46 belongs to the interdomain linker and is disordered. A Zn$^{2+}$ is tetrahedrally coordinated by His12, His16, Cys40, and Cys43, although the details of the interactions with the histidines differ between forms D and E.

The E form of the NTD is very similar to its counterpart seen in the crystal structure of the two-domain construct (1K6Y [44]), with an rmsd of 1.05 Å between molecules A of the models. By comparison, the rmsd values between molecule A and the other three molecules seen in the crystal range from 0.28 to 0.63 Å. Form D of the NTD deviates by almost 2 Å from its crystallographic counterpart. As expected, the interactions of the Zn$^{2+}$ with its ligands in the crystal structure correspond to the structurally closer E form.

The structure of the NTD of HIV-2 IN [78,79] is very similar to that of its HIV-1 counterpart. A comparison between molecule A of the first model in the assembly in 1E0E (no average structure available) and molecule A of 1K6Y shows an rmsd of 0.86 Å, although the sequence identity between the two proteins is only 55%. The details of the interactions with Zn$^{2+}$ are also almost identical in the IN NTDs of HIV-1 (E form) and HIV-2. The rmsd between NTD molecules A and B in the structure of the HIV-2 IN NTD–CCD–LEDGF complex (3F9K [59]) is 0.44 Å, whereas the deviation between NTD molecule A of 3F9K and 1E0E is 1.17 Å.

The CTD of IN

The structure of the isolated CTD of HIV-1 IN (residues 220–270, the C-terminus truncated) was solved independently by two groups using NMR (1IHV [80] and 1QMC [78,81]). In addition, the structures of the CCD–CTD constructs were determined by X-ray crystallography for ASV IN (1C0M, 1C1A [60]), SIV IN (1C6V [46]), and HIV-1 IN (1EX4 [45]). The structures of the CTD show the presence of dimeric molecules whose subunits were modeled as identical in 1IHV and as very similar in 1QMC (rmsd 0.34 Å calculated for model 1, as no average structure is available). The rmsd between these two structures is 1.2 Å. The deviations between the NMR structures of the isolated CTD and the crystallographic models of the two-domain constructs are larger, 1.65 Å between 1IHV and 1EX4 (both HIV-1 IN), 1.87 Å for 1C0M (SIV IN), and 2.05 Å for 1C0M (ASV IN). The four CTDs present in the crystal structure of ASV IN consist of two very similar pairs (AB and CD, rmsd of ~0.15 Å), whereas the rmsd between molecules A and C is 0.77 Å.

A monomer of the CTD of HIV-1 IN consists of five β-strands (residues 222–229, 232–245, 248–253, 256–262, and 266–270), arranged in an antiparallel manner in a β-barrel (Fig. 3C). Eighteen residues that were not included in the constructs used in the NMR experiments are also not seen in the X-ray structures of HIV-1 and SIV IN, and are presumed to be disordered. The topology of the CTD is reminiscent of SH3 domains, which are found in many proteins that interact with either other proteins or with nucleic acids, although no sequence similarity to SH3 proteins could be detected.

Two-domain constructs consisting of the NTD and CCD

Two structures of the NTD–CCD constructs are available. A 2.4 Å resolution crystal structure of NTD–CCD of HIV-1 IN offers multiple views, owing to the presence of four molecules in the asymmetric unit (1K6Y [44]), paired into AB and CD dimers, in which the two-fold relationship between the catalytic domains resembles that of the isolated CCDs. Molecules A and D are very similar (rmsd of 0.43 Å), whereas molecules B and C are more distant (rmsd of 1.85 Å), mostly owing to small changes in the interdomain angles. The interdomain linker region (residues 47–55) is disordered in all molecules, but the authors have postulated a pattern of domain connectivity taking into account the presence of NTD–CCD contacts (involving the tip of the finger loop of the CCD and one side of helix 20–24 in the NTD) and of NTD–NTD$'$ interactions in the dimer that would
conserve the symmetry of the CCD–CCD' dimer, and arguing that any other NTD–CCD connection would be incompatible with the length of the linker (Fig. 4A). In that interpretation, the distance between the end of the NTD and the beginning of the CCD is about 9 Å. However, that view is contradicted by the 3.2 Å resolution crystal structure of the NTD–CCD construct of HIV-2 IN (3F9K), in which 24 IN molecules create 12 crystallographically independent dimers, each interacting with a single molecule of LEDGF [59]. Whereas the connection between the NTD and the CCD is broken in the electron density map of one of the IN molecules in each assembly, it is unambiguous in the other one, forming an extended chain ~18 Å in length.

Surprisingly, careful analysis of the 1K6Y structure allows reconnection of the separated NTDs and CCDs in all four molecules in exactly the same manner as in the 3F9K structure (Fig. 6C), by the use of symmetry-related domains and of NTD–CCD linkers equivalent to the intact linker from the 3F9K structure. In this model, which differs significantly from the one originally proposed [44], the NTD forms a compact structure with the CCD, using the finger loop of the latter as a docking site, with a number of hydrogen bond and electrostatic points of attachment (Fig. 7). To reconcile the two models of NTD–CCD arrangement, Cherpanov et al. [59] have invoked the mechanism of 3D domain swapping. However, although this is certainly a possibility, it may be more prudent to conclude that the arrangement seen in the 3F9K structure is the only model that is currently supported by experiment. The relevance of the observed NTD–CCD interactions to the functional properties of IN is not yet clear.

Two-domain constructs consisting of the CCD and CTD

The structures of two-domain constructs comprising the CCD and CTD were solved independently for HIV-1 IN at 2.8 Å resolution (1EX4 [45]), for SIV IN at 3.0 Å resolution (1C6V [46]), and for two crystal forms of ASV IN at 2.5 Å (1COM [60]) and 3.1 Å (1C1A [60]) resolution. The crystals of HIV-1 IN contain two molecules forming a dimer, although the two-fold axis relating the CCDs differs from the operation connecting the CTDs. In each molecule, the two domains are connected by a long, well-defined helix comprising residues 195–222. The helix separates the CCD from the CTD by as much as 30 Å (Fig. 6D).

The two crystal forms of ASV IN contain a single dimer, or a pair of dimers. Similarly to what was observed in HIV-1 IN, the symmetry operations between the two domains of each dimer differ for the CCD and the CTD. The linker between the CCD and the CTD comprises residues 213–223 which assume a completely extended conformation, and not the helical form observed in HIV-1 IN. Thus, the number of amino acids forming the linker in ASV IN is much smaller than in HIV-1 IN, although the distance between the start and end points of these linkers is not very different, at least for one of the two crystallographically independent molecules of ASV IN.

Whereas the crystals of SIV IN also contain two dimers in the asymmetric unit, only a single CTD (denoted X) could be traced unambiguously. The chain connecting it to the CCD could not be traced, and the authors postulated a connection with chain A of the catalytic domain [46]. If that were the case, the two domains would form a fairly compact molecule, with multiple interdomain contacts. However, an alternative assignment of the visible CTD to the D chain of CCD [44] would create an extended two-domain molecule not unlike that of the other two enzymes, although the interdomain angles would differ in each of the structures. In any case, a comparison of the three structures makes it clear that the arrangement of the domains shows considerable variability and may be influenced by other parts of the molecular complex.

Interdomain contacts

One of the measures of the extent of interactions between the domains of IN (dimerization of identical domains, and oligomerization of different domains) is the surface area buried in their interfaces. Calculations of the buried surface area (in all buried surface calculations in this article, the reported surface refers to one interacting protein partner, unless stated otherwise) have been performed for a representative set of IN structures (Table S2). The CCD–CCD interactions extend over a fairly uniform area of about 1000–1650 Å². This area does not depend on the presence of the linkers, at least with regard to the NTD–CCD linker (as shown by assigning the linker to either domain, or removing it altogether for the structure 3F9K). The most extensive association (largest buried surface area) characterizes the CCD–CCD dimer of HIV-1 IN (about 1500 Å²), and decreases in the order HIV-1 > HIV-2 (~1330 Å²) > SIV (~1250 Å²) > ASV (~1080 Å²) > PFV (~1000 Å²).

Homodimeric interactions between the CTDs range between none to negligible (buried surface area at most ~450 Å²). In most structures, the CTDs in the dimers of CCD–CTD constructs are far away from each other, possibly because of the influence of crystal
contacts. However, even in the solution dimer of isolated CTD, the area of interaction is very limited (\(\sim 330 \, \text{Å}^2 \)).

The interaction of isolated NTDs in solution is slightly stronger (\(\sim 510 \, \text{Å}^2 \)) but still rather insubstantial. In the dimer of the NTD–CCD construct with the conformation substantiated by the 3F9K structure, there are, of course, no direct NTD–NTD interactions, because the NTDs fold back on their respective CCDs, and thus are completely isolated from each other.

However, even in the model proposed speculatively for the HIV-1 construct, the area of direct NTD–NTD interaction is so small (\(260 \, \text{Å}^2 \)) that it can be safely neglected.

As the NTD in a multidomain construct folds back on the CCD, the calculation of the NTD–CCD interaction area will depend strongly on the treatment of the linker peptide (residues 47–55 in the HIV-1 IN sequence). When this sequence, which is in any case disordered in most of the structures, is completely
omitted, the value of the buried surface area is \(\sim 530 \, \text{Å}^2 \). Assigning the linker to the CCD yields a slightly higher apparent buried surface area \(\sim 670 \, \text{Å}^2 \), but the linker certainly should not be treated as part of the NTD, as in that case the buried surface area would be unreasonably large \(\sim 1050 \, \text{Å}^2 \).

The interaction between the CCD and CTD is very limited, with buried surface area values falling below 400 \(\text{Å}^2 \). In the published 1C6V model (SIV IN), the buried surface area exceeds 600 \(\text{Å}^2 \), but after a more plausible reinterpretation of the assignment of the visible CTD to a CCD, the interaction area drops to \(\sim 100 \, \text{Å}^2 \), thus becoming insignificant.

As can be gleaned from these calculations, the solvent-excluded buried areas of the homointeractions and heterointeractions between the domains of IN are, with the exception of the CCD–CCD contact, not very extensive, and their actual values are strongly dependent on the details of the structures used for their calculations, emphasizing once more the flexible nature of this enzyme. It must be also noted that, despite the variation of the buried surface area calculated for the homodimers of the CCDs for INs originating from different viruses, the nature of the interactions is preserved. However, no similar consistency is seen for the homodimers of the other two domains, and the picture of the interdomain interactions is even less clear.

Binding of IN to cellular protein partners

Although a number of proteins have been implicated as putative components of the preintegration complex with IN [29], the only available structural information is for complexes of the IN-binding domain (IBD) of LEDGF with the CCD of HIV-1 IN [35], and with the NTD–CCD of HIV-2 IN [59]. The IBD used in these experiments included residues 347–442 of LEDGF. The complex of LEDGF with the HIV-1 IN CCD consists of two catalytic domains of IN bound to two IBDs in a fully symmetric fashion. Each IBD interacts with segments of the two CCDs, the latter forming a typical dimer, as observed in all other structures of IN CCDs. The most extensive interactions between IBD and IN involve a segment including residues 166–171 of molecule A (a connecting peptide between helices \(\alpha_4 \) and \(\alpha_5 \), described as an unusual helix–turn–helix motif [82]) and bury a surface area of 319 \(\text{Å}^2 \). The IBD also interacts with residues belonging to helix \(\alpha_3 \) (and, to a lesser extent, helix \(\alpha_1 \)) of molecule B (buried surface area of 379 \(\text{Å}^2 \)). Owing to the symmetry of the complex, the second IBD interacts with the corresponding areas of molecules B and A of the CCD. The interactions of the IBD with the CCD in the complex with the HIV-2 NTD–CCD are virtually identical, with additional, mostly electrostatic, interactions provided by the N-terminal helix of NTD, which belongs to molecule A (buried surface area of 153 \(\text{Å}^2 \)). It is intriguing, however, that the latter complex, which was prepared by simultaneous coexpression of the interacting proteins, lacks the second IBD, even though the superposition of the common IBD in the two structures is almost exact, and the second binding site is fully formed, including the same positioning of the NTD. The importance of the structurally derived interactions between IN and the IBD was verified by exten-
sive mutational studies of the respective interfaces [59]. It was also reported that areas of full-length LEDGF other than the IBD may be involved in interactions with IN [83,84].

Oligomeric states of full-length IN and modeling of its structure

The oligomerization state of IN *in vivo* is still not known, but extensive *in vitro* work has shed light on this matter. The isolated NTDs, CCDs and CTDs all remain in solution as dimers, a conclusion that is uniformly supported by solution chemistry and structural biology studies [1]. However, experiments that found IN–DNA interaction sites by photocrosslinking also suggested that IN acts as an octamer [85]. Comparison of simulation analysis against time-resolved fluorescence anisotropy measurements of rotation correlation times could distinguish monomers, dimers, and tetramers, whereas octamers could not be resolved from higher-order species [86]. At micromolar concentrations, IN exists as tetramers, octamers, and higher-order aggregates, but such concentration is much higher than cellular concentration. At catalytic (submicromolar) concentration, these experiments showed that IN could exist as a monomer, whereas addition of Zn$^{2+}$ stimulated dimer formation. However, the authors noted that the standard buffer conditions included detergents, which dissociate IN oligomers [86]. Solution small-angle X-ray scattering data for complexes of IN with oligonucleotides also indicated primarily monomeric species [87], with the same caveat regarding the possible effects of detergents on the oligomerization state. If detergent is eliminated from the purification and assay experiments, IN exhibits different assembly and catalytic properties.

It must be pointed out that all of the experiments mentioned above used indirect measurements of the size of IN oligomers. More direct observations involving atomic force microscopy of intact IN complexed to a DNA substrate have shown visually that the size of these complexes is consistent with a tetramer of IN molecules [88]. Similar results were obtained by electron microscopy and single-particle image reconstruction, which yielded coarse 3D models at ~27 Å resolution [89]. The finding of a tetramer as the predominant feature agrees with several IN–DNA models, with analysis of IN isolated from nuclear extracts and its complex with LEDGF [35], and with dynamic light scattering experiments.

The assembly of HIV-1 IN into oligomers is different when it is in complex with Mn$^{2+}$ versus Mg$^{2+}$ under various *in vitro* conditions [90]. These experiments did not clarify which cation is preferred, but they did show that HIV-1 IN had no active site cation preference when already in complex with a structural (noncatalytic) Zn$^{2+}$. The authors concluded that binding of the catalytic cation and DNA requires a pre-existing specific IN conformation.

A number of models of IN–DNA complexes were proposed, involving either just the CCD [91–95] or the full-length enzymes [96–98]. As no structure of the intact IN molecule has been reported to date, the two-domain IN constructs, namely NTD–CCD and CCD–CTD, are being used as starting points for building models of the complete HIV-1 IN protein and IN–DNA complexes [44]. These structures will be informative, because they complement each other, and physically fit well together. However, it must be stressed that the IN domains are connected by flexible linkers allowing significant interdomain variability, and a three-domain model may not reflect the actual conformation(s) of the intact protein alone or in complex with DNA (Fig. 8).

The starting point for modeling the interactions between full-length IN and DNA was usually based upon experimental structures of recombinases (which bind DNA molecules, forming Holliday junctions) [99]. The structure of Tn5 transposase as a synaptic complex transition state intermediate came as a breakthrough for IN modelers [100]. The prokaryotic Tn5 transposase performs a series of catalytic steps, with distinct processing (endonucleolytic cleavage) and joining reactions, which are very similar to those catalyzed by retroviral IN. Also, its CCD is structurally very similar to those of retroviral INs. Tn5 functions as a dimer, and its DNA-binding sites provide a clear template for modeling IN–DNA interactions. These models can be used to predict the IN amino acids important for DNA binding, and this can be subsequently tested experimentally.

DNA crosslinking studies implicate certain positively charged or hydrophobic residues in IN–DNA interactions. Such residues identified in HIV-1 IN include His114, Tyr143, and Lys159 [85]. The DNA-binding CTD contains less well-conserved residues that have been identified as being important for DNA binding, namely HIV-1 Glu246, Lys258, Pro261, Arg262, and Lys264, with some weaker involvement of Ser230 and Arg231 [96]. The somewhat lower degree of sequence conservation in this region may reflect differences in specificity. Finally, the CTD also plays an important role in IN dimerization. When Leu241 and Leu242 along the C-terminal dimer interface are mutated to alanine, they disrupt IN dimerization and strongly reduce catalysis [101]. A comparison of
mutants of HIV-1 and ASV INs identified a number of residues (Gln44, Leu68, Glu69, Val72, Ser153, Lys160, Ile161, Gly163, Gln164, Val165, His171, Leu172, Asp229, Ser230, and Asp253) as being responsible for the specificity of binding one of the DNA long terminal repeat ends to IN [97,98]. Further experimental and computational work is needed in order to improve the existing models of the structure of IN and of the interactions with the DNA substrates.

Structural basis of the enzymatic activity of IN

The CCD of IN is responsible for the two enzymatic activities of the enzyme, processing and joining. These reactions are chemically similar, proceeding through nucleophilic attack on a phosphorus atom in the DNA backbone by a donor hydroxyl group (water or the newly formed 3'-OH), activated by the catalytic center of the enzyme. *In vitro*, these reactions require Mg$^{2+}$ or Mn$^{2+}$, the latter being more efficient. However, because of its physiological abundance, Mg$^{2+}$ is assumed to be the cofactor *in vivo*. Although the isolated CCD may exhibit some basal enzymatic activities, the full-length enzyme is necessary for joining to proceed.

The nature and number of divalent metal cations required for catalysis are still under debate. The general composition of the IN active site (a constellation of acid groups) and the similarity of the catalyzed reactions to those carried out by other nucleotidyl transferases would strongly indicate the two metal cation mechanism elaborated by Steitz & Steitz [102]. However, despite numerous attempts, it has never been possible to obtain an IN–Mg$^{2+}$ or IN–Mn$^{2+}$ complex with two metal cations in the active site (that is, only...
site I is filled with Mg\(^{2+}\) or Mn\(^{2+}\), whereas site II is empty). On the other hand, it was possible to introduce two cations into the active site by using metals that are physiologically irrelevant but bind more strongly, such as Zn\(^{2+}\), Cd\(^{2+}\) or Ca\(^{2+}\) with ASV IN [54], and Cd\(^{2+}\) with HIV-1 IN [45]. The case of Zn\(^{2+}\) coordination is of special interest, because: first, Zn\(^{2+}\) accepts only four, tetrahedrally arranged ligands, which form a subset of the octahedral sphere of the other cations; second, although it is not a cofactor of IN catalysis in vivo, it can support endonucleolytic activity in vitro assays; third, it severely impairs polynucleotidyl transferase activities of IN in vitro; and, fourth, its potential interaction with the CCD is complicated by the fact that it is the major physiologically cofactor of the NTD.

The most instructive case is Cd\(^{2+}\) coordination by IN. One has to clearly distinguish the cases of HIV-1 IN and ASV IN, because the above-mentioned Cys65 of HIV-1 IN actually functions as a bridge coordinating both metal centers (sites I and II) simultaneously, replacing in this role the catalytic Asp64, which has been described in a ternary complex with Mg\(^{2+}\) (at sites A and B) and an RNA-DNA hybrid [103], as well as Tn5 transposase [104] (Fig. 9). First, the metal–metal distance is nearly identical in ASV IN and RNase H, and is compatible with what Yang et al. [105] predict to be required for effective nucleotide bond hydrolysis (4.0 Å). Additionally, in both cases, the two metal centers are connected by two bridging ligands, one of them being a conserved aspartate from the catalytic apparatus (Asp64 in ASV IN) which takes part in its formation (Glu157 in ASV IN) is the most mobile element of the IN active site. From this comparison, it is very likely that a proper site II of retroviral IN, occupied by a catalytically competent metal cation (Mg\(^{2+}\) or Mn\(^{2+}\)), could only be formed with the participation of a DNA substrate.

![Fig. 9. Divalent metal cation binding sites in INs. Comparison of the two metal sites found in the Cd\(^{2+}\) complex of ASV IN (Protein Data Bank code 1VSJ, color code according to element type) [54] and in the Mg\(^{2+}\)-RNA-DNA complex of RNase H (Protein Data Bank code 12BL, molecule A, orange) [103]. The active sites were superposed by a simple least-squares fit of the metal sites and the carboxylate oxygen atoms of the bridging aspartate, which in ASV IN is the first element (Asp64) of the D,D(35)E active site. The metal–metal distances in the two structures are nearly identical: 4.10 Å in the RNase H complex, and 4.05 Å in the IN complex. Site I, denoted A in [103,108], which in retroviral IN structures was also seen with the catalytic Mg\(^{2+}\) or Mn\(^{2+}\), has a more regular octahedral coordination. The coordination sphere I in the two structures are similar, except that two ligands in the equatorial plane, an aspartate (Asp121 in ASV IN) and a water molecule, have swapped places (in 12BL, the aspartate in question has been mutated to asparagine, D192N). Another important difference is that the bridging water molecule in the ASV IN complex is replaced in the RNase H complex by an oxygen atom from the scissile phosphate group (P) of the RNA substrate. The phosphate group has a particularly important role in the formation of site II, as it provides two of the ligands. Site II (denoted B in [103,108]) has a far less regular geometry; the coordination sphere is incomplete in 1VSJ or highly distorted in 12BL. Site II has never been seen to be occupied by Mg\(^{2+}\) or Mn\(^{2+}\) in metal complex structures of retroviral INs, and the glutamatic acid which takes part in its formation (Glu157 in ASV IN) is the most mobile element of the IN active site. From this comparison, it is very likely that a proper site II of retroviral IN, occupied by a catalytically competent metal cation (Mg\(^{2+}\) or Mn\(^{2+}\)), could only be formed with the participation of a DNA substrate.

Divalent metal cation functional state of the enzyme.
Integrase – a target for AIDS therapy

M. Jaskolski et al.

mapping is A–I and B–II. This is because, like site A in the RNase H structure, site I of the IN CCD has a nearly perfect coordination sphere, whereas site II is far less regular, with a missing ligand, large scatter of the Cd2+-O distances, and large angular distortions. If this analogy between the active sites of IN and RNase H is correct, then the catalytic metal cation at site I of IN would participate in activating a nucleophilic group (e.g. a water molecule) for attack on a substrate DNA phosphate group. Metal II, on the other hand, would play a role in destabilizing the enzyme–substrate complex, i.e. in driving the reaction forward. At the completion of a reaction cycle, one or both metal cations would probably dissociate, as their effective binding (especially at site II) critically depends on the presence of substrate DNA. The parallel between RNase H and retroviral IN also has a chemical aspect, because coordination of two Mg2+ by RNase H was easy and occurred at low metal ion concentrations only in the presence of the RNA–DNA substrate. With the enzyme alone, the effective Mg2+ concentration had to be much higher, at nonphysiological levels [106]. With ASV IN, it was not possible to introduce a catalytic metal cation at site II, despite a thorough experimental survey, in which elevated metal concentrations were used [54]. This difficulty is related to the flexibility of the glutamate element of the active site, which participates in the formation of site II. It may be necessary for the enzyme to use external means, such as substrate assistance, to sequester an Mg2+ in site II, with subsequent or simultaneous stabilization of the glutamate side chain.

Concluding remarks

After an initial surge of activity in 1994–2001, which resulted in a wealth of crystal and NMR structures of retroviral INs, only a few new structures have been published in the last 8 years. As many questions, particularly those regarding the structure of the full-length active enzyme and the multiprotein–DNA preintegration complexes, remain to be answered, further structural and biochemical work on this enzyme still needs to be pursued. In addition, IN continues to be an important target for the design of anti-HIV drugs, which makes continuation of studies of its structure and function even more important.

Acknowledgements

We would like to thank A. Gustchina, A. M. Skalka and M. Andrake for fruitful discussions, and P. Cheparnov for providing us with a manuscript and data prior to their publication. This project was supported in part by the Intramural Research Program of the NIH, National Cancer Institute, Center for Cancer Research. The research of M. Jaskolski was supported by a Faculty Scholar fellowship from the National Cancer Institute.

References

3 Frankel AD & Young JA (1998) HIV-1: fifteen proteins and an RNA.
14 Mastrolorenzo A, Rusconi S, Scozzafava A, Barbaro G & Supuran CT (2007) Inhibitors of HIV-1 protease: current state of the art 10 years after their...

immunodeficiency virus type 1 integrase. Biochemistry 39, 9285–9294.

Supporting information
The following supplementary material is available:
Table S1. The experimental atomic coordinate sets for retroviral IN determined by X-ray crystallography or NMR spectroscopy, available in the Protein Data Bank.
Table S2. Total BSA, or solvent excluded area (Å²), buried on protein–protein interactions, with breakdown into contributions from interactions between different components of an assembly.
This supplementary material can be found in the online version of this article.
Please note: Wiley-Blackwell is not responsible for the content or functionality of any supplementary materials supplied by the authors. Any queries (other than missing material) should be directed to the corresponding author for the article.